Quick cheatsheet

How to run:

Launching and Training the Model:

source ~/tensorflow/bin/activate
python -m tensorflow.models.image.cifar10.cifar10_train

It will take a long time...

So it's better to run process or shell script that can continue running in the background after you log out from a shell.[1]

nohup python -m tensorflow.models.image.cifar10.cifar10_train &>training_log $

Evaluating a Model:

nohup python -m tensorflow.models.image.cifar10.cifar10_eval &>eval_log $

Patrial codes:

cifar10_train.py

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from datetime import datetime
import os.path
import time

import numpy as np
from six.moves import xrange  # pylint: disable=redefined-builtin
import tensorflow as tf

from tensorflow.models.image.cifar10 import cifar10

FLAGS = tf.app.flags.FLAGS

tf.app.flags.DEFINE_string('train_dir', '/tmp/cifar10_train',
                           """Directory where to write event logs """
                           """and checkpoint.""")
tf.app.flags.DEFINE_integer('max_steps', 1000000,
                            """Number of batches to run.""")
tf.app.flags.DEFINE_boolean('log_device_placement', False,
                            """Whether to log device placement.""")


def train():
  """Train CIFAR-10 for a number of steps."""
  with tf.Graph().as_default():
    global_step = tf.Variable(0, trainable=False)

    images, labels = cifar10.distorted_inputs()

    logits = cifar10.inference(images)
    loss = cifar10.loss(logits, labels)

    train_op = cifar10.train(loss, global_step)

    saver = tf.train.Saver(tf.all_variables())

    summary_op = tf.merge_all_summaries()

    init = tf.initialize_all_variables()

    sess = tf.Session(config=tf.ConfigProto(
        log_device_placement=FLAGS.log_device_placement))
    sess.run(init)

    tf.train.start_queue_runners(sess=sess)

    summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, sess.graph)

    for step in xrange(FLAGS.max_steps):
      start_time = time.time()
      _, loss_value = sess.run([train_op, loss])
      duration = time.time() - start_time

      assert not np.isnan(loss_value), 'Model diverged with loss = NaN'

      if step % 10 == 0:
        num_examples_per_step = FLAGS.batch_size
        examples_per_sec = num_examples_per_step / duration
        sec_per_batch = float(duration)

        format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
                      'sec/batch)')
        print (format_str % (datetime.now(), step, loss_value,
                             examples_per_sec, sec_per_batch))

      if step % 100 == 0:
        summary_str = sess.run(summary_op)
        summary_writer.add_summary(summary_str, step)

      if step % 1000 == 0 or (step + 1) == FLAGS.max_steps:
        checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')
        saver.save(sess, checkpoint_path, global_step=step)


def main(argv=None): 
  cifar10.maybe_download_and_extract()
  if tf.gfile.Exists(FLAGS.train_dir):
    tf.gfile.DeleteRecursively(FLAGS.train_dir)
  tf.gfile.MakeDirs(FLAGS.train_dir)
  train()


if __name__ == '__main__':
  tf.app.run()

cifar10_eval.py

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from datetime import datetime
import math
import time

import numpy as np
import tensorflow as tf

from tensorflow.models.image.cifar10 import cifar10

FLAGS = tf.app.flags.FLAGS

tf.app.flags.DEFINE_string('eval_dir', '/tmp/cifar10_eval',
                           """Directory where to write event logs.""")
tf.app.flags.DEFINE_string('eval_data', 'test',
                           """Either 'test' or 'train_eval'.""")
tf.app.flags.DEFINE_string('checkpoint_dir', '/tmp/cifar10_train',
                           """Directory where to read model checkpoints.""")
tf.app.flags.DEFINE_integer('eval_interval_secs', 60 * 5,
                            """How often to run the eval.""")
tf.app.flags.DEFINE_integer('num_examples', 10000,
                            """Number of examples to run.""")
tf.app.flags.DEFINE_boolean('run_once', False,
                         """Whether to run eval only once.""")


def eval_once(saver, summary_writer, top_k_op, summary_op):
  with tf.Session() as sess:
    ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
    if ckpt and ckpt.model_checkpoint_path:
      saver.restore(sess, ckpt.model_checkpoint_path)
      global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
    else:
      print('No checkpoint file found')
      return

    coord = tf.train.Coordinator()
    try:
      threads = []
      for qr in tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS):
        threads.extend(qr.create_threads(sess, coord=coord, daemon=True,
                                         start=True))

      num_iter = int(math.ceil(FLAGS.num_examples / FLAGS.batch_size))
      true_count = 0  # Counts the number of correct predictions.
      total_sample_count = num_iter * FLAGS.batch_size
      step = 0
      while step < num_iter and not coord.should_stop():
        predictions = sess.run([top_k_op])
        true_count += np.sum(predictions)
        step += 1

      precision = true_count / total_sample_count
      print('%s: precision @ 1 = %.3f' % (datetime.now(), precision))

      summary = tf.Summary()
      summary.ParseFromString(sess.run(summary_op))
      summary.value.add(tag='Precision @ 1', simple_value=precision)
      summary_writer.add_summary(summary, global_step)
    except Exception as e:  # pylint: disable=broad-except
      coord.request_stop(e)

    coord.request_stop()
    coord.join(threads, stop_grace_period_secs=10)


def evaluate():
  """Eval CIFAR-10 for a number of steps."""
  with tf.Graph().as_default() as g:
    eval_data = FLAGS.eval_data == 'test'
    images, labels = cifar10.inputs(eval_data=eval_data)

    logits = cifar10.inference(images)
    top_k_op = tf.nn.in_top_k(logits, labels, 1)

    variable_averages = tf.train.ExponentialMovingAverage(
        cifar10.MOVING_AVERAGE_DECAY)
    variables_to_restore = variable_averages.variables_to_restore()
    saver = tf.train.Saver(variables_to_restore)

    summary_op = tf.merge_all_summaries()

    summary_writer = tf.train.SummaryWriter(FLAGS.eval_dir, g)

    while True:
      eval_once(saver, summary_writer, top_k_op, summary_op)
      if FLAGS.run_once:
        break
      time.sleep(FLAGS.eval_interval_secs)


def main(argv=None):  # pylint: disable=unused-argument
  cifar10.maybe_download_and_extract()
  if tf.gfile.Exists(FLAGS.eval_dir):
    tf.gfile.DeleteRecursively(FLAGS.eval_dir)
  tf.gfile.MakeDirs(FLAGS.eval_dir)
  evaluate()


if __name__ == '__main__':
  tf.app.run()

results matching ""

    No results matching ""