Quick cheatsheet

CIFAR-10 in Nolearn using CNN[1]

Sourse code:

https://app.dominodatalab.com/LeJit/GPU_Example/browse

Download the whole GPU_exmple folder, and follow the tutorial here.

If you are a user at elsa, you can download the modified version (higher accuracy) from server:

$ git clone ssh://140.114.75.138/var/git/nolearn_cifar10_example.git/

The system will start to build ssh-connection, just login. After downloading, try to run ConvolutionNN.py,

$ cd nolearn_cifar10_example/
$ python ConvloutionNN.py

or try another network MultiLayerPerceptron.py.

$ python MultiLayerPerceptron.py

ConcolutionNN.py

[download]

Result (ConvolutionNN.py):

Finished setting up Theano
# Neural Network with 128194 learnable parameters

## Layer information

  #  name     size
---  -------  --------
  0  input    3x32x32
  1  conv1    16x30x30
  2  pool1    16x15x15
  3  conv2    32x14x14
  4  pool2    32x7x7
  5  conv3    64x6x6
  6  pool3    64x3x3
  7  hidden4  200
  8  output   10

  epoch    trn loss    val loss    trn/val    valid acc  dur
-------  ----------  ----------  ---------  -----------  -----
      1     2.12073     1.86161    1.13920      0.32490  2.93s
      2     1.71640     1.59117    1.07870      0.42770  2.92s
      3     1.52466     1.44750    1.05330      0.47690  2.92s
      4     1.40519     1.35891    1.03406      0.51230  2.92s
      5     1.31972     1.28742    1.02509      0.54010  2.93s
      6     1.24873     1.22473    1.01960      0.56470  2.93s
      7     1.18727     1.17548    1.01003      0.58480  2.93s
(etc.)
    495     0.00002     4.31504    0.00000      0.69960  2.93s
    496     0.00002     4.31551    0.00000      0.69960  2.93s
    497     0.00002     4.31599    0.00000      0.69960  2.93s
    498     0.00002     4.31646    0.00000      0.69960  2.93s
    499     0.00002     4.31693    0.00000      0.69960  2.93s
    500     0.00001     4.31740    0.00000      0.69960  2.93s
The accuracy of this network is: 0.69

TrainingLoss


[1] Tutorial: Faster deep learning with GPUs and Theano (Chinese: 使用GPU和Theano加速深度学习)

results matching ""

    No results matching ""