Detailed description
If you don't have a background with RCNN, check out the introduction here.
Step1: Training AlexNet using data flower17
Define the model using tflearn API
def create_alexnet(num_classes):
# Building 'AlexNet'
network = input_data(shape=[None, 224, 224, 3])
network = conv_2d(network, 96, 11, strides=4, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 256, 5, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, num_classes, activation='softmax')
network = regression(network, optimizer='momentum',
loss='categorical_crossentropy',
learning_rate=0.001)
return network
def train(network, X, Y):
# Training
model = tflearn.DNN(network, checkpoint_path='model_alexnet',
max_checkpoints=1, tensorboard_verbose=2, tensorboard_dir='output')
If you already have a trained model, load the model
if os.path.isfile('model_save.model'):
model.load('model_save.model')
Train the model and save as "model_save.model"
model.fit(X, Y, n_epoch=100, validation_set=0.1, shuffle=True,
show_metric=True, batch_size=64, snapshot_step=200,
snapshot_epoch=False, run_id='alexnet_oxflowers17') # epoch = 1000
# Save the model
model.save('model_save.model')
Step2: selective search
Here we use the selectivesearch python API so we focus on realizing IOU (interection or union).
def if_intersection(xmin_a, xmax_a, ymin_a, ymax_a, xmin_b, xmax_b, ymin_b, ymax_b):
if_intersect = False
If no overlap, the region might be background
if xmin_a < xmax_b <= xmax_a and (ymin_a < ymax_b <= ymax_a or ymin_a <= ymin_b < ymax_a):
if_intersect = True
elif xmin_a <= xmin_b < xmax_a and (ymin_a < ymax_b <= ymax_a or ymin_a <= ymin_b < ymax_a):
if_intersect = True
elif xmin_b < xmax_a <= xmax_b and (ymin_b < ymax_a <= ymax_b or ymin_b <= ymin_a < ymax_b):
if_intersect = True
elif xmin_b <= xmin_a < xmax_b and (ymin_b < ymax_a <= ymax_b or ymin_b <= ymin_a < ymax_b):
if_intersect = True
else:
return False
Get the interection area
if if_intersect == True:
x_sorted_list = sorted([xmin_a, xmax_a, xmin_b, xmax_b])
y_sorted_list = sorted([ymin_a, ymax_a, ymin_b, ymax_b])
x_intersect_w = x_sorted_list[2] - x_sorted_list[1]
y_intersect_h = y_sorted_list[2] - y_sorted_list[1]
area_inter = x_intersect_w * y_intersect_h
return area_inter
Then we could count the IOU
def IOU(ver1, vertice2):
# vertices in four points
vertice1 = [ver1[0], ver1[1], ver1[0]+ver1[2], ver1[1]+ver1[3]]
area_inter = if_intersection(vertice1[0], vertice1[2], vertice1[1], vertice1[3], vertice2[0], vertice2[2], vertice2[1], vertice2[3])
if area_inter:
area_1 = ver1[2] * ver1[3]
area_2 = vertice2[4] * vertice2[5]
iou = float(area_inter) / (area_1 + area_2 - area_inter)
return iou
return False
Step3: Fine tune AlexNet
- IOU: threthold 0.5
- Training SVM: threthold 0.3
Define the fine tune model and check if already trained. Here the "network" argument in tflearn.DNN is same as previous mentioned (AlexNet).
def fine_tune_Alexnet(network, X, Y):
# Training
model = tflearn.DNN(network, checkpoint_path='rcnn_model_alexnet',
max_checkpoints=1, tensorboard_verbose=2, tensorboard_dir='output_RCNN')
if os.path.isfile('fine_tune_model_save.model'):
print("Loading the fine tuned model")
model.load('fine_tune_model_save.model')
elif os.path.isfile('model_save.model'):
print("Loading the alexnet")
model.load('model_save.model')
else:
print("No file to load, error")
return False
model.fit(X, Y, n_epoch=10, validation_set=0.1, shuffle=True,
show_metric=True, batch_size=64, snapshot_step=200,
snapshot_epoch=False, run_id='alexnet_rcnnflowers2') # epoch = 1000
Train and save as "fine_tune_model_save.model"
# Save the model
model.save('fine_tune_model_save.model')
Read the last layer of AlexNet and tarin SVM